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Notations:

• For all z ∈ RD, the L2 norm on RD of z is defined as follows: ||z||22 = zT z

• The gradient of a function f : θ ∈ RD 7→ R at θ ∈ RD is denoted as follows ∇θf(θ) =
(
∂f
∂θ1

(θ), . . . , ∂f
∂θD

(θ)
)

• Mn,p(R) is the space of the matrices composed of n rows and p columns.

• In ∈Mn,n(R) is the identity matrix of size n.

• Convention: D dimensional row vectors are considered MD,1(R) matrices.

1 Building a factor model (60 marks)

Algorithmic trading strategies use factor models to quantify the relationship between the return of an asset and
the sources of risk that are the main drivers of these returns.

We wish to predict the return of an asset based on M features called factor premia.

For each time step t in {1, . . . , T}, the return of the asset is denoted r<t>, and the M features are denoted
(f<t>i )1≤i≤M .

In the two following sections, the training data is composed of the feature matrix F of shape (T,M) and the
output observation matrix R of shape (T, 1):

1.1 Introducing a basic Regression Model

A factor model simply decompose the return of the asset at time t (denoted r<t>) into the set of factor
premia (f<t>i )1≤i≤M as follows:

∀t ∈ {1, . . . , T} r<t> =

M∑
i=1

βif
<t>
i + α+ ε with (β1, . . . , βM , α) ∈ RM+1, ε ∼ N (0, σ2) (1.1)

Question 1: What is the name of the model defined in equation 1.1 ? (3 marks)
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Let F<1>, . . . , F<T> be the rows of the matrix F and β = (β1, . . . , βM , α)T ∈ MM+1,1(R) be the vector of all
the parameters we want te estimate using the training data.

We want to re-write the equation 1.1 in a matrix form as follows:

∀t ∈ {1, . . . , T} r<t> = βT F̃<t> + ε, with ε ∼ N (0, σ2)

Question 2: Deduce F̃<t> from F<t> for all t ∈ {1, . . . ,T}. (3 marks)

Let F̃ be the matrix composed of the rows F̃<t> ∀t ∈ {1, . . . , T}

Question 3: What is the shape of the F̃ matrix ? (3 marks)

Question 4: Show that the optimal vector of parameters β∗ ∈MM+1,1(R) is defined as follows:

β∗ = arg min
β∈MM+1,1(R)

1

T
||F̃ β −R||22 (6 marks) (1.2)

The gradient of the function J(β) := 1
T ||F̃ β −R||

2
2 with respect to β is given in equation 1.3

∇βJ(β) =
2

T
(F̃T F̃ β − F̃TR) (1.3)

We would like to optimize the function J using the Batch Gradient Descent Algorithm.

Question 5: What is the expression of the loss on each batch ? Describe the optimization process.
(5 marks)

The following figure shows the prediction error (the Root Mean Square Error denoted RMSE) for each epoch
for the training and validation set.

Figure 1: Training and validation error

Question 6: What is the problem highlighted in the the figure 1 and what should be the optimal
number of epochs? (5 marks)
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1.2 Introducing regularization techniques to the Regression Model

An important theoratical result of Machine Learning is the fact that a model’s generalization error can be
expressed as the sum of the three following errors: the bias, the variance and the irreducible error.

Question 7: Explain the bias-variance tradeoff. (6 marks)

One popular approach to control the overfitting problem is that of regularization, which involves the addition
of a penalty term to the error function to discourage the regression coeffictions from reaching large values.

The added penalty turns the optimal linear regression coefficients into the solution to the following minimization
problem:

β∗reg = arg min
βreg∈MM+1,1(R)

1

T

(
||F̃ βreg −R||22 + λS(βreg)

)
(1.4)

These shrinkage methods differ by how they calculate the penalty term. The most common versions for the
linear regression model are the ridge regression and the lasso regression.

In this section, let us consider the ridge regression. The penalty term is then defined as follows:

S(βreg) = βTregβreg

Equation 1.4 becomes:

β∗reg = arg min
βreg∈MM+1,1(R)

1

T

(
||F̃ βreg −R||22 + λβTregβreg

)
(1.5)

Question 8: Show that the closed solution to the ridge regression problem defined in 1.5 is:

β∗reg = (F̃T F̃ + λIM+1)−1F̃TR (8 marks)

(Hint : ∀z ∈ RD ∀A ∈MD,D(R) ∇z(zTAz) = (A+AT )z)

Question 9: What would be the closed solution to the linear regression problem 1.2 ? (4 marks)

Question 10: Why did we choose an iterative learning algorithm to solve the linear regression
problem 1.2 and a closed solution for the ridge regression problem 1.5 ? (5 marks)

Question 11: The hyperparameter λ controls the strength of the regularization. How would you
choose the appropriate λ ? (6 marks)

Question 12: Describe three other methods used to prevent the overfitting problem in the context
of Neural Networks or Tree Based Models. (6 marks)

2 Building a Sentiment Analysis model (60 marks)

We wish to create a sentiment analysis model to classify financial news into three possible labels: positive,
negative or neutral.

The training dataset is composed of N sentences (Xi)1≤i≤N . Each sentence is composed of T words.
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Let V be the vocabulary size. The first step of the processing consists in creating a dictionary to map each
word to a discrete category in {1, . . . , V }.

We end up with N sequences (Xi)1≤i≤N of categories X<t>
i in {1, . . . , V } for all i ∈ {1, . . . , N} and for all t ∈

{1, . . . , T} as shown in the following figure:

The three possible labels are encoded as follows: 0 for the negative sentiment, 1 for the neutral sentiment and
2 for the positive sentiment.

2.1 Using a Generative Classifier

In this second section, we would like to create a generative classifier. For that, we need to train three class
conditional density functions, one for each target value k ∈ {0, 1, 2}

Each class conditional density function associated with the target k ∈ {0, 1, 2} is parameterized by θk, which
enables us to calculate pθk(X|y = k) for a given a sequence X = (X<1>, . . . , X<T>) ∈ {1, . . . , V }T .

2.1.1 Predicting the target

Question 13: On which data are we going to train each class conditional discrete density function
? (3 marks)

Question 14: Let X = (X<1>, . . . ,X<T>) ∈ {1, . . . ,V}T be a new sequence. Express p(y = k|X) as a
function of (p(y = j)j∈{0,1,2} and (pθj(X|y = j))j∈{0,1,2} (6 marks)

2.1.2 Using a Hidden Markov Model as a class conditional discrete density estimator on the
discrete categories

Let k be in {0, 1, 2}. We would like to use a Hidden Markov Model (HMM) as a class conditional discrete
density estimator pθk(X|y = k) (where X = (X<1>, . . . , X<T>) ∈ {1, . . . , V }T ).

Let M be the number of hidden states.

Question 15: What are the parameters θk of the HMM class conditional discrete density estima-
tor? (5 marks)

Question 16: By choosing reasonable values of V and M, compare the number of parameters of
the HMM model with the number of parameters of a simple Markov Model (6 marks)

Question 17: What training method can we use to estimate the parameters of the HMM? (3
marks)
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2.1.3 Using a Hidden Markov Model as a class conditional density estimator on the embedding
vectors

Instead of modeling pθk(X|y = k) for X = (X<1>, . . . , X<T>) ∈ {1, . . . , V }T , we would like to consider instead
a class conditional density estimator on the sequences of some embedding vectors.

Each category in {1, . . . , V } represents a word and can be mapped into a D-dimensional vector, where each
dimension encodes part of the information about the corresponding word.

Question 18: Give two examples of unsupervised models used to create such embedding vectors
and describe briefly one of them. (6 marks)

For each new sequence X = (X<1>, . . . , X<T>) ∈ {1, . . . , V }T , we define X̃ = (X̃<1>, . . . , X̃<T>) the sequence
of the embedding vectors X̃<t> ∈ RD associated with the categories X<t> ∈ {1, . . . , V } for each t ∈ {1, . . . , T}.

We would like to use an HMM model in order to learn the distribution of a sequence of D-dimensional embedding
vectors X̃ = (X̃<1>, . . . , X̃<T>) as represented in the following figure:

For each t ∈ {1, . . . , T}, the embeding vector X̃<t> ∈ RD is associated with a hidden state h<t> ∈ {1, . . . ,M}.

Let m be in {1, . . . ,M}. The emission probability distribution of the observation X<t> conditioned on the
hidden state h<t> = m is parameterized by a multivariate normal distribution with a mean vector µm ∈ RD
and a covariance matrix Σm ∈MD,D(R), as explained in equation 2.1

∀t ∈ {1, . . . , T} ∀m ∈ {1, . . . ,M} X<t>|h<t> = m ∼ ND(µm,Σm) (2.1)

Let θ̃k be the set of the parameters of the HMM class conditional density estimator pθ̃k(X̃|y = k) (where X̃ is

a sequence of embedding vectors (X̃<1>, . . . , X̃<T>)

Question 19: What are the parameters θ̃k of the HMM class conditional density estimator on the
embedding vectors? (6 marks)

Question 20: By choosing reasonable values for M, D and V, compare the number of parameters
of the HMM model on the discrete observations in {1, . . . ,V} with the number of parameters of
the HMM on the D-dimensional embedding vectors. (6 marks)

2.2 Using a Sequential Neural Network

We would like to use a Sequential Neural Network model with LSTM layers and pre-trained D-dimensional
word vectors to perform the same classification of news.

Question 21: Define such a model by specifying the different layers, the different hyperparameters
for each layer and how the shape of the data is changing after each layer transformation. (10 marks)

Question 22: What loss function should we use? (3 marks)

Question 23: Describe an appropriate optimizer with an adaptive learning rate. (6 marks)
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