Machine Learning in Finance

Lecture 8

RNN Applications and Attention Mechanisms

Arnaud de Servigny & Hachem Madmoun

Outline:

• The Sentiment Analysis Pipeline

The Various Applications of RNNs

The Sequence to Sequence Framework

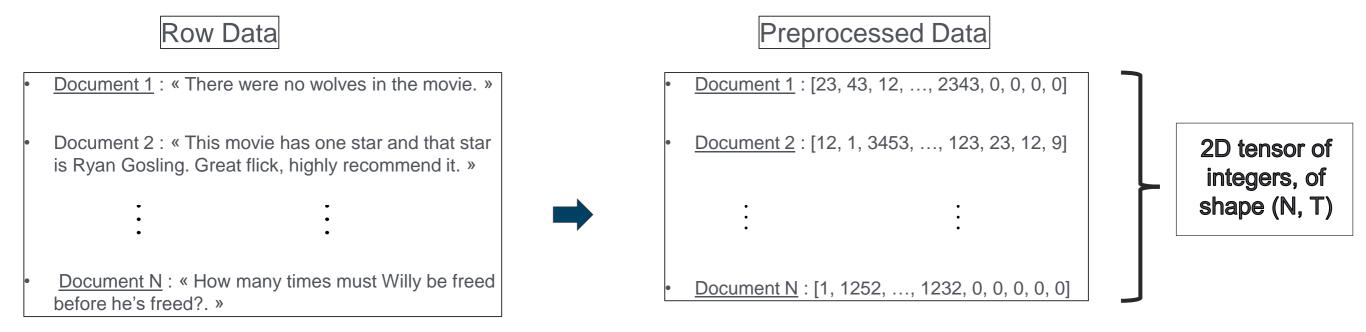
• Introducing the Attention Mechanism

Attention is all you need

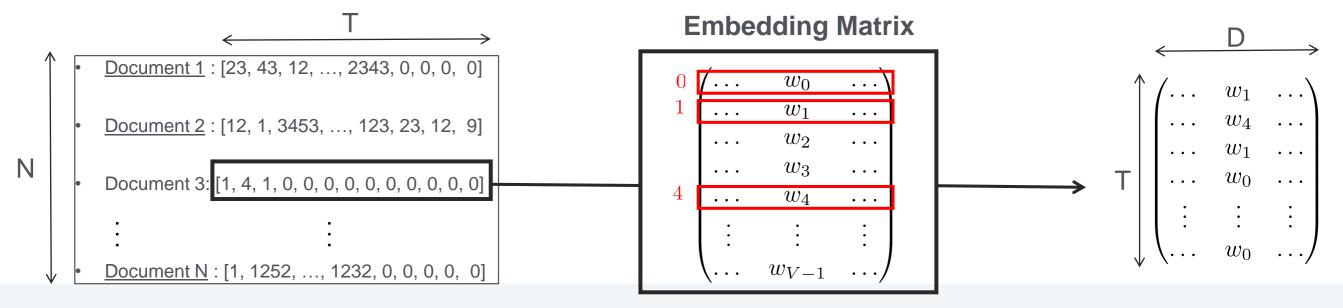
Part 1: The Sentiment Analysis Pipeline

The Embedding Layer

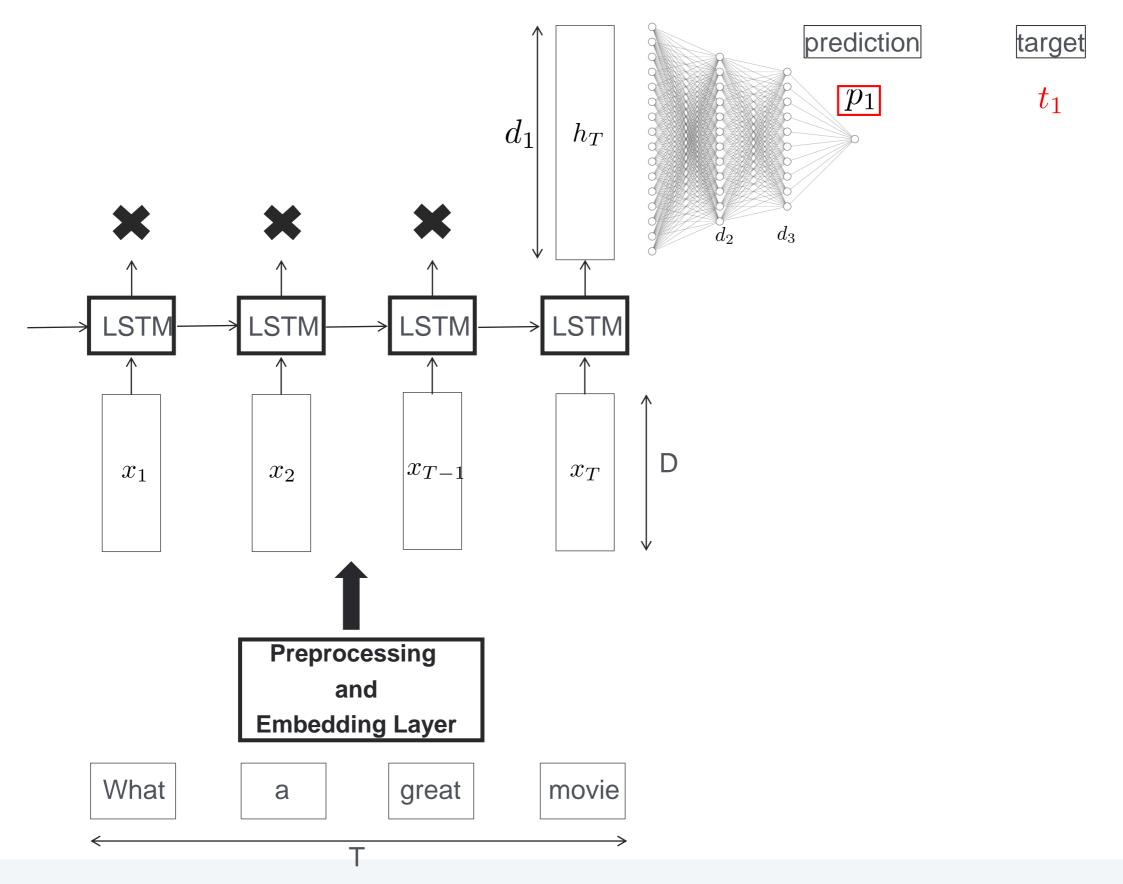
- The **Embedding Layer** takes as input the sequences of integers. But all the sequences should be of the same length T, so that we can pack them into the same tensor:
 - Sequences that are shorter than T are padded with zeros.
 - Sequences that are longer that T are truncated.



• The Embedding Layer transforms the 2-dim input tensor of shape (N, T) into a tensor of shape (N, T, D).

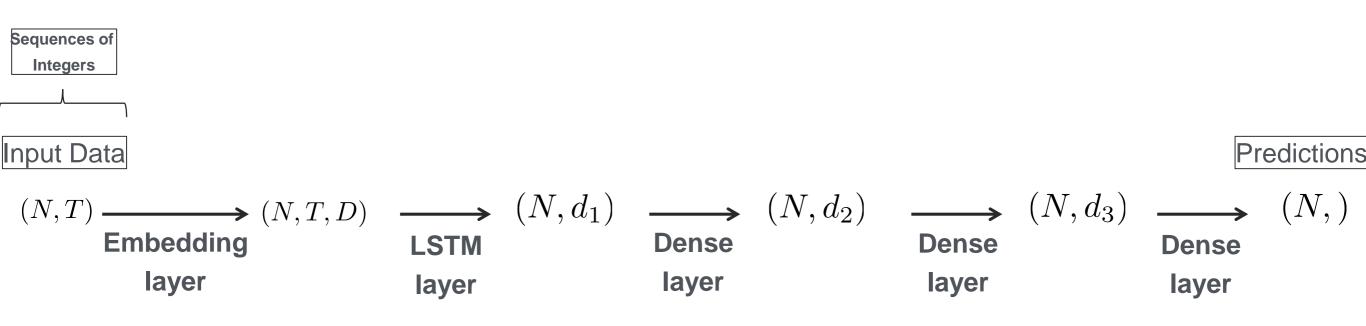


The Sentiment Analysis Pipeline – Part 1 –



The Sentiment Analysis Pipeline - Part 2 -

• Let's keep track of the evolution of the tensor shape after each layer transformation:

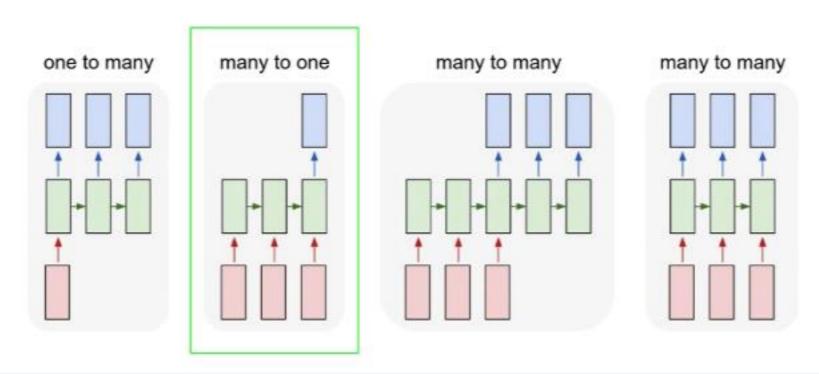


The Forward Propagation

Part 2: The Various Applications of RNNs

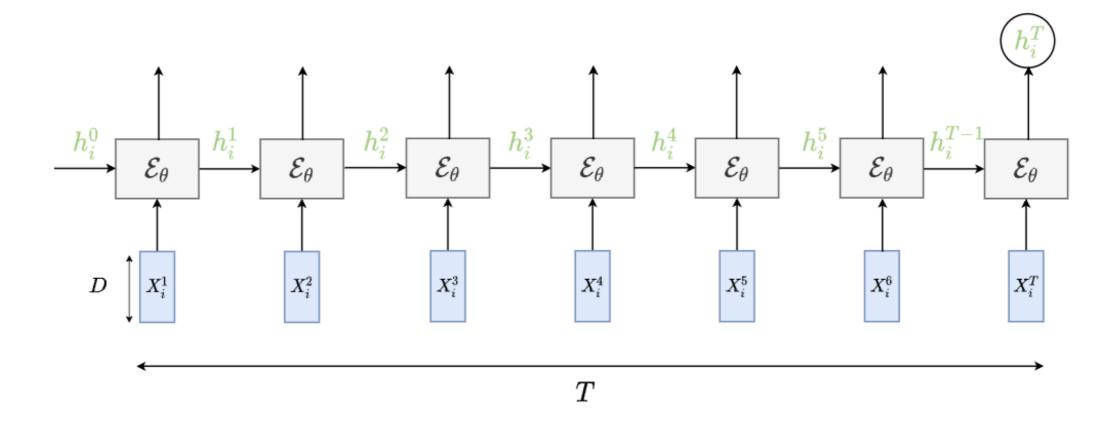
The Various Applications of RNNs

- There are principally 4 types of applications to Recurrent Neural Networks.
 - One to Many: Mapping a vector to a sequence of vectors.
 - Many to One: Mapping a sequence of vectors to one vector.
 - Many to Many:
 - Aligned case: Mapping a sequence to another sequence of the same length T
 - <u>Unaligned case</u>: Mapping a sequence of length T_x into another sequence of length T_y (with $T_x
 eq T_y$)



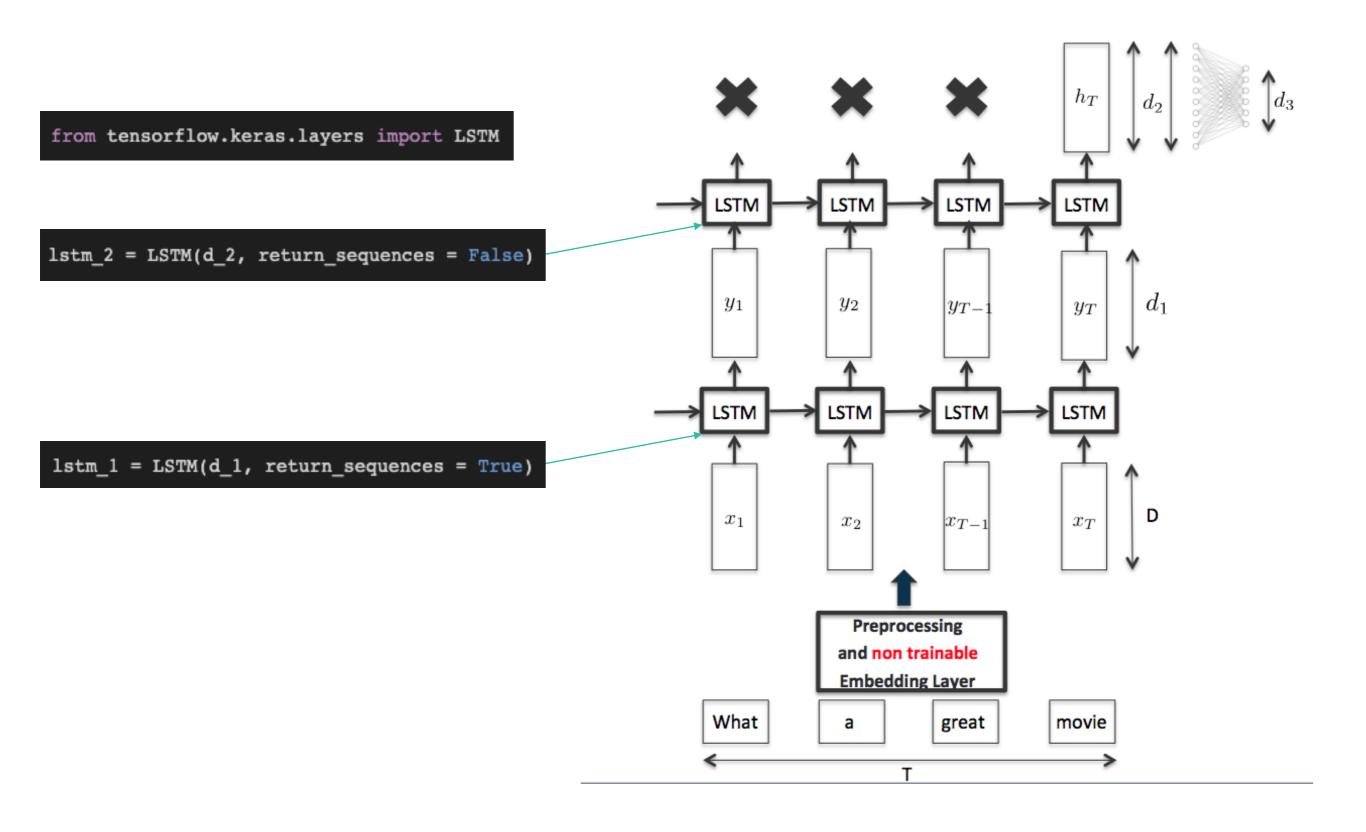
The Many to One problem – The architecture –

• In the Many to One framework, the objective is to map a sequence $(X_i^1,\ldots,X_i^T)\in\mathbb{R}^{T imes D}$ into a vector $h_i^T\in\mathbb{R}^d$ using the LSTM layer \mathcal{E}_{θ} parameterized by θ



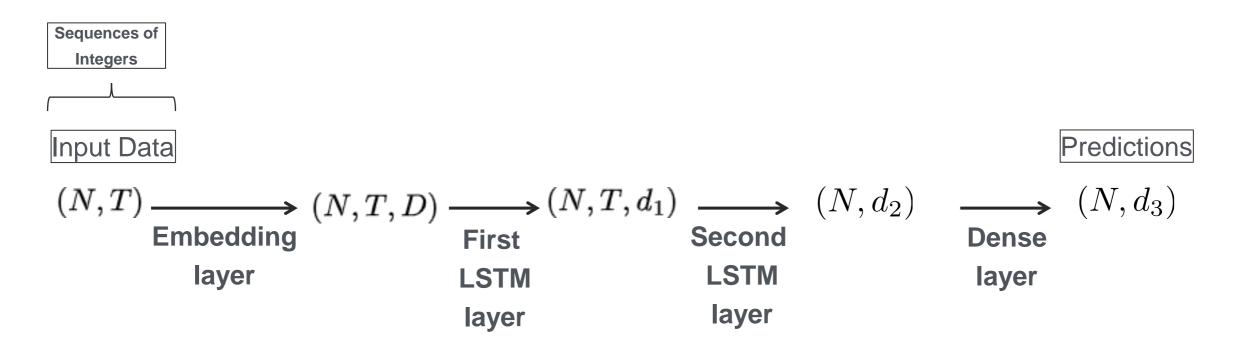
- So far, we have only discussed models that are part of the Many to One framework.
 - Sentiment Analysis (Lecture 6).
 - News Classification (programming session 7).
- Let us consider some examples in the next slides.

Stacking LSTM layers for a Multiclass classification Problem



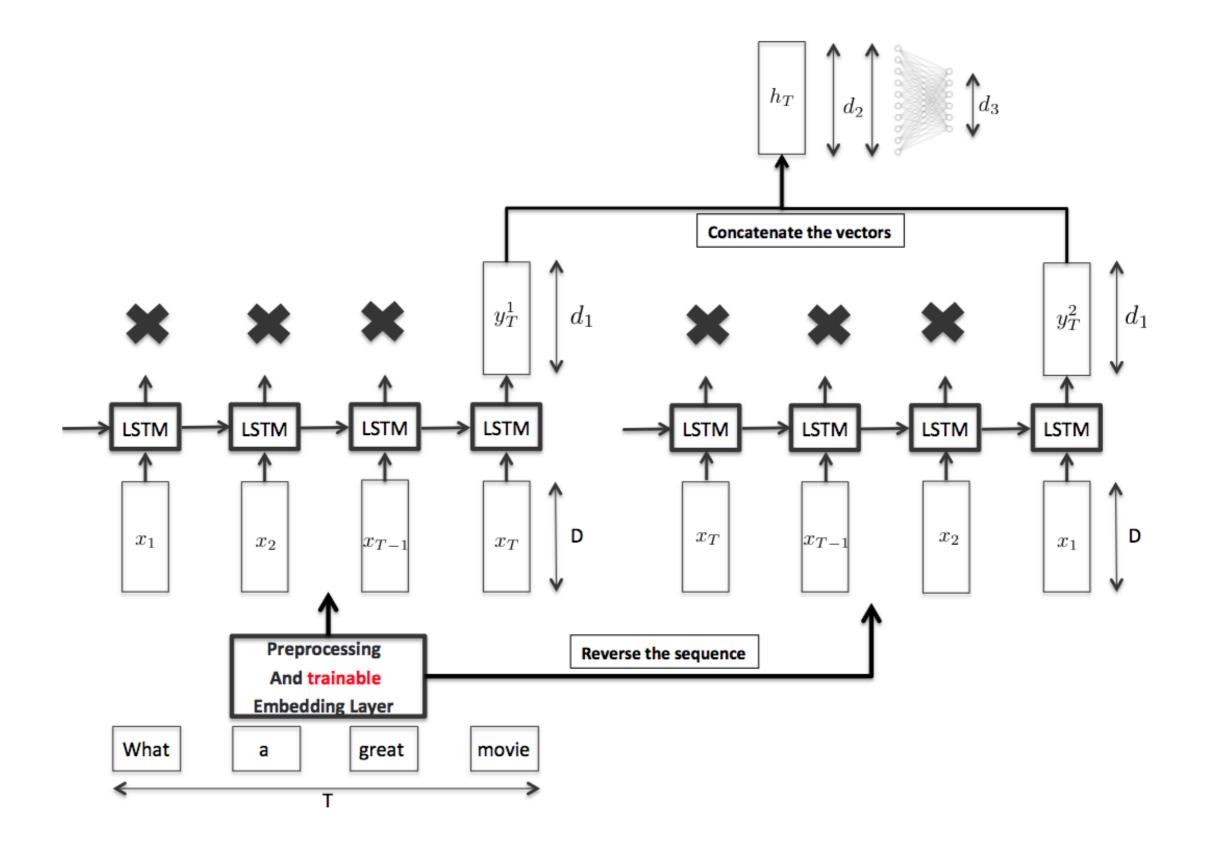
Stacking LSTM layers for a Multiclass classification Problem

• Let's keep track of the evolution of the tensor shape after each layer transformation:



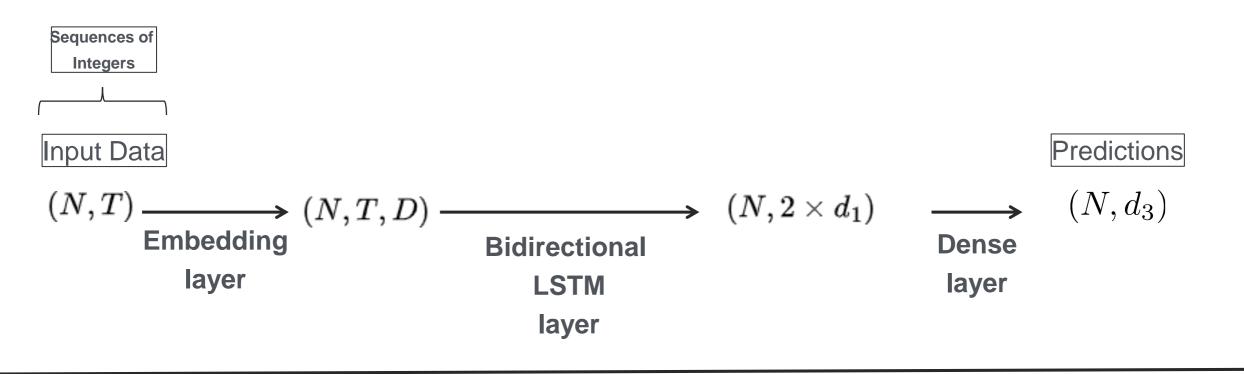
The Forward Propagation

Bidirectional LSTM for a Multiclass classification Problem



Bidirectional LSTM for a Multiclass classification Problem

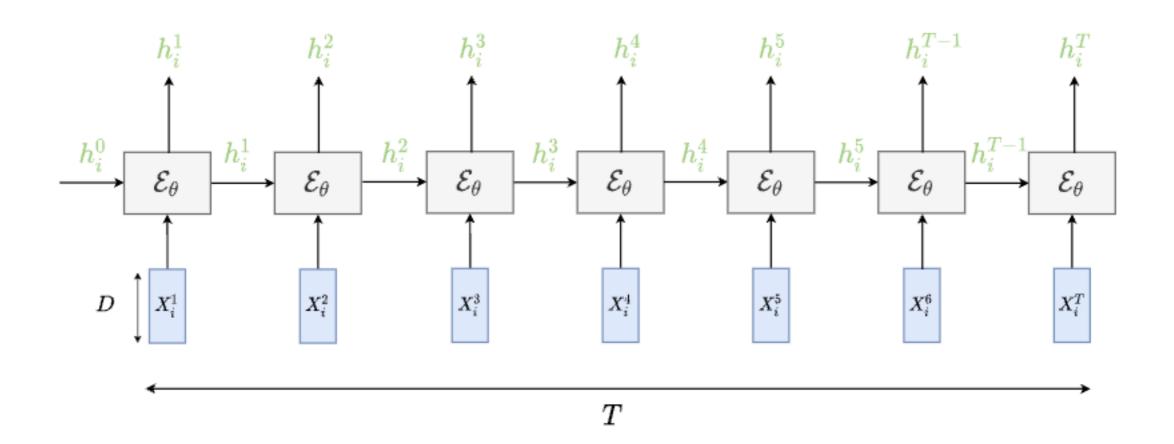
Let's keep track of the evolution of the tensor shape after each layer transformation:



The Forward Propagation

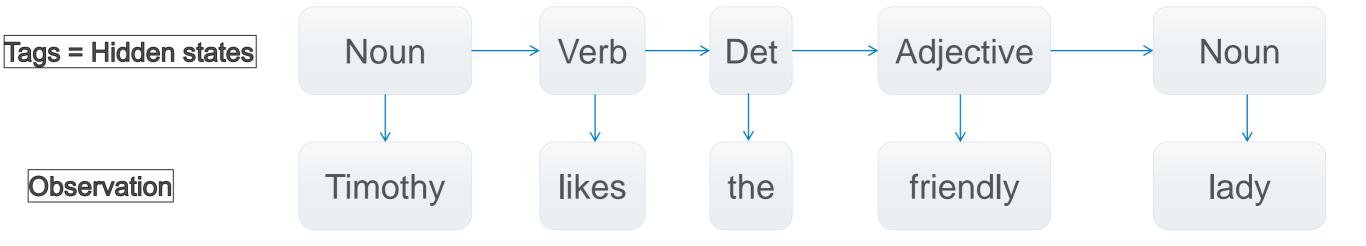
The Many to Many Problem (Aligned case) - The Architecture -

- In the Many to Many framework, the objective is to map a sequence $(X_i^1,\dots,X_i^T)\in\mathbb{R}^{T imes D}$ into a sequence $(h_i^1,\dots,h_i^T)\in\mathbb{R}^{T imes d}$ using the LSTM layer $\mathcal{E}_{ heta}$ parameterized by θ
- We are considering the $oldsymbol{aligned}$ case where the input and the output sequences are of the same length T



The Many to Many Problem (Aligned case) - an Example -

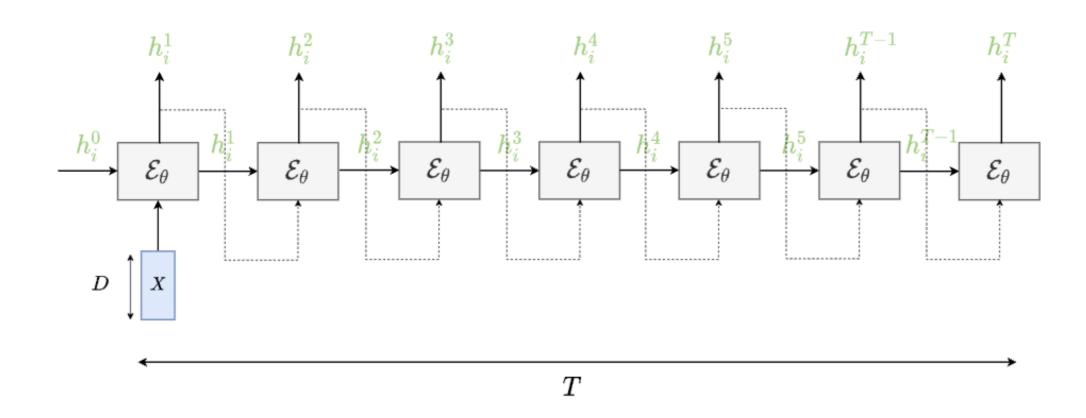
- POS (Part Of Speech) Tagging is a typical example, where the objective is to tag each word
 of a sentence with its "Part-of-Speech" tag.
- Another popular model can be used for POS tagging: The Hidden Markov Model (HMM).



(See the Optional Reading) for more details about the HMM

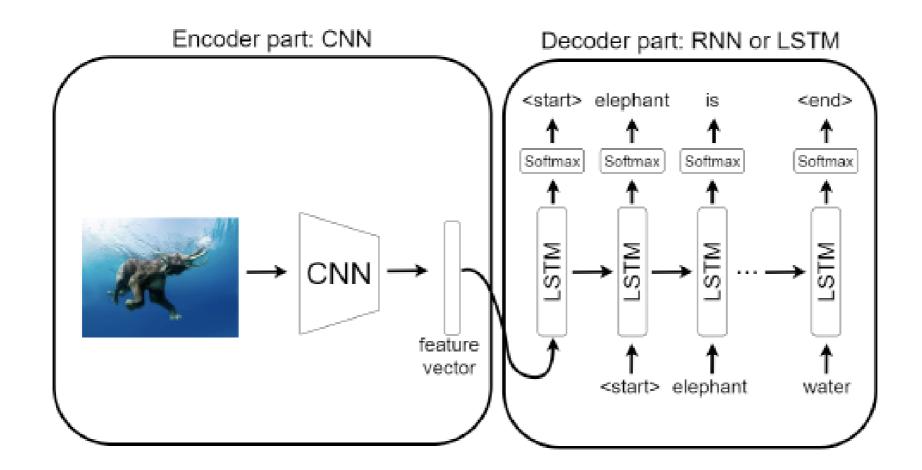
The One to Many Problem – The Architecture –

- In the One to Many framework, the objective is to map a vector $X \in \mathbb{R}^D$ into a sequence $(h_i^1,\ldots,h_i^T) \in \mathbb{R}^{T imes d}$ using the LSTM layer $\mathcal{E}_{ heta}$ parameterized by heta
- The vector $X \in \mathbb{R}^D$ is typically the output of an encoder layer processing an image or another sequence for instance.
- At each step of the generation process, the output $\,h_i^t\,$ is fed back into the model to get the new hidden state $\,h_i^{t+1}\,$



The One to Many Problem – an Example –

- Image captioning is a typical example, where the description of an image is generated.
- An image is mapped into a feature vector, which in turn becomes the input for an LSTM architecture.



Interactive Session

Part 3: The Sequence to Sequence Framework

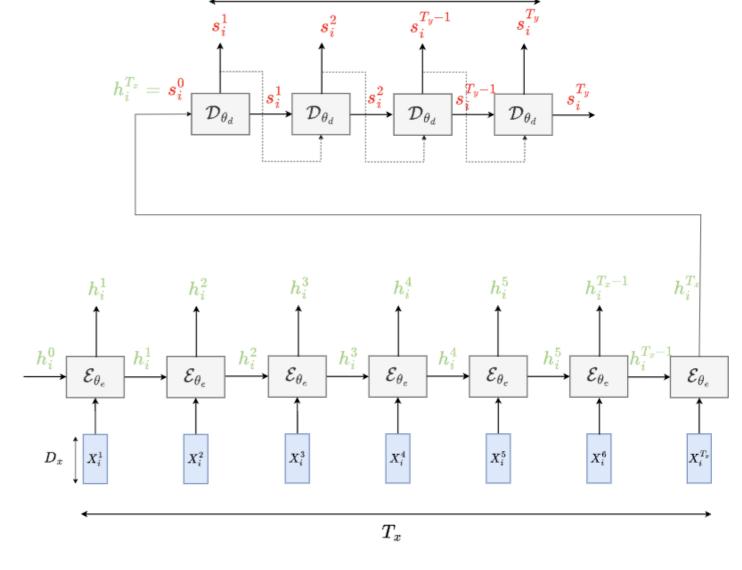
The Sequence to Sequence Framework –The architecture –

- For Many to Many applications, the LSTM models can only be applied in the aligned case (i.e, if the input and the output sequences are of the same length).
- However, if we want to learn a mapping from a sequence of input vectors of length T_x into a sequence of output vectors of length T_y (where $T_x \neq T_y$), we need to introduce a new framework, composed of two steps.
 - An encoder $\mathcal{E}_{ heta_e}$ maps the input sequence $(X_i^1,\dots,X_i^{T_x})\in\mathbb{R}^{T_x imes D_x}$ into the final hidden state $h_i^{T_x}$
 - A decoder \mathcal{D}_{θ_d} is initialized with the final encoder hidden state:

$$h_i^{T_x} = s_i^0$$

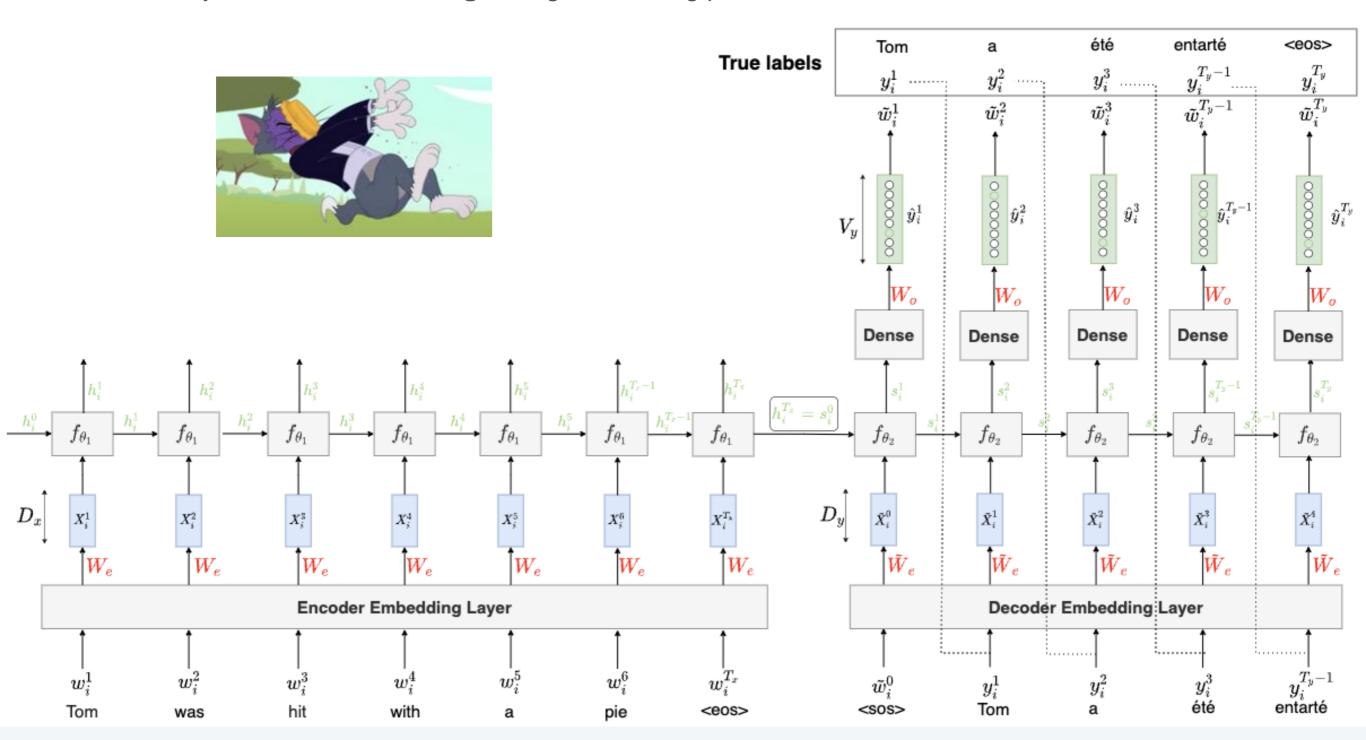
 We can then generate the sequence of hidden states associated with the decoder

$$(s_i^1,\ldots,s_i^{T_y})$$



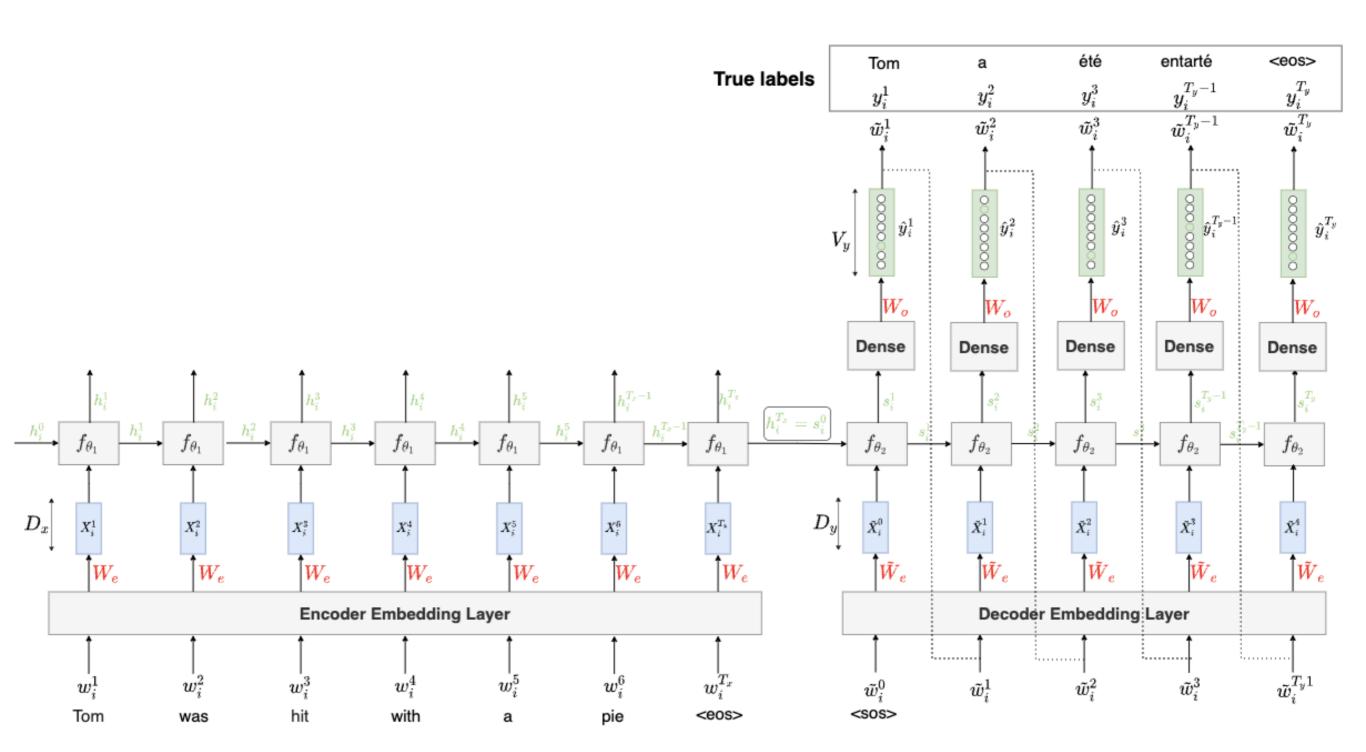
The Sequence to Sequence Framework – an Example –

- A Typical example for the Sequence to Sequence Framework is Neural Machine Translation (NMT).
- We usually use **Teacher Forcing** during the training process.



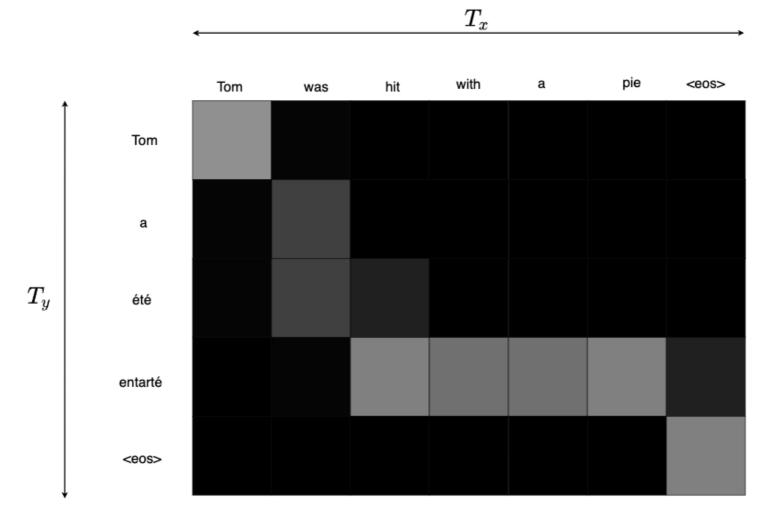
The Sequence to Sequence Framework – an Example –

• During the prediction phase, at each iteration, the decoder output is fed back into the model.



Limitations of the Sequence to Sequence Framework

- There are two main challenges with the sequence to sequence framework using RNNs:
 - First, by feeding a single fixed length vector to the decoder, the encoder has to compress all the input information in few dimensions, which leads to a loss of information.
 - This architecture doesn't allow model alignment between the input and the output sequences.
- We would like each output sequence to selectively focus on relevant parts of the input sequence.



Part 4: Introducing the Attention Mechanism

Sequence to Sequence with Attention Mechanisms

- The vanilla Sequence to Sequence model has to boil the entire input sequence into a single vector.
- At each decoder time step $t_y \in \{1,\dots,T_y\}$, we would like the input vector to be: $c_i^{t_y} = \sum^{t_x} lpha_i^{< t_y,t_x> t_y}$

such that: $orall t_x \in \{1,\ldots,T_x\}$ $lpha_i^{< t_y,t_x>} \geq 0$ and $\sum_i^{T_x} lpha_i^{< t_y,t_x>} = 1$ Vanilla Sequence to Sequence Sequence to Sequence with Attention

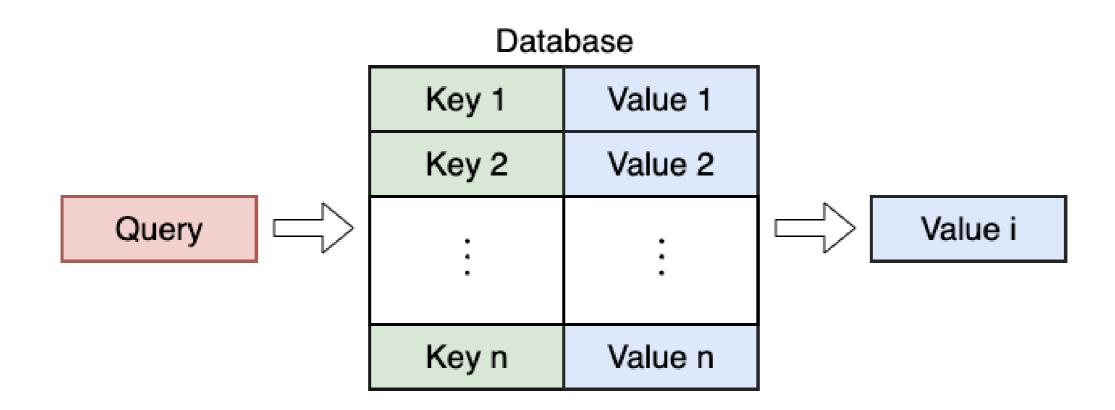
 T_x

attention weights

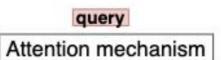
Interactive Session

Query-Retrieval Modeling

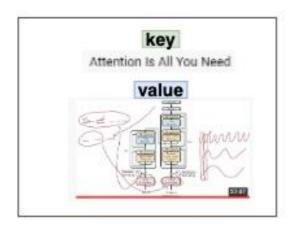
- Attention mechanisms intuition originates from database Query-Retrieval Problems.
- In the following database, the query retrieval problem consists in searching a query through the keys in order to retrieve a value.

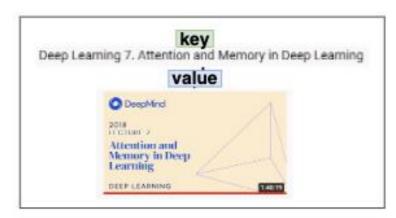


Query Retrieval Modeling – an Example –

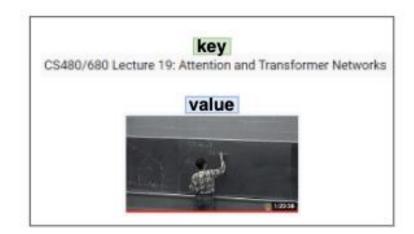


Database (key/value)

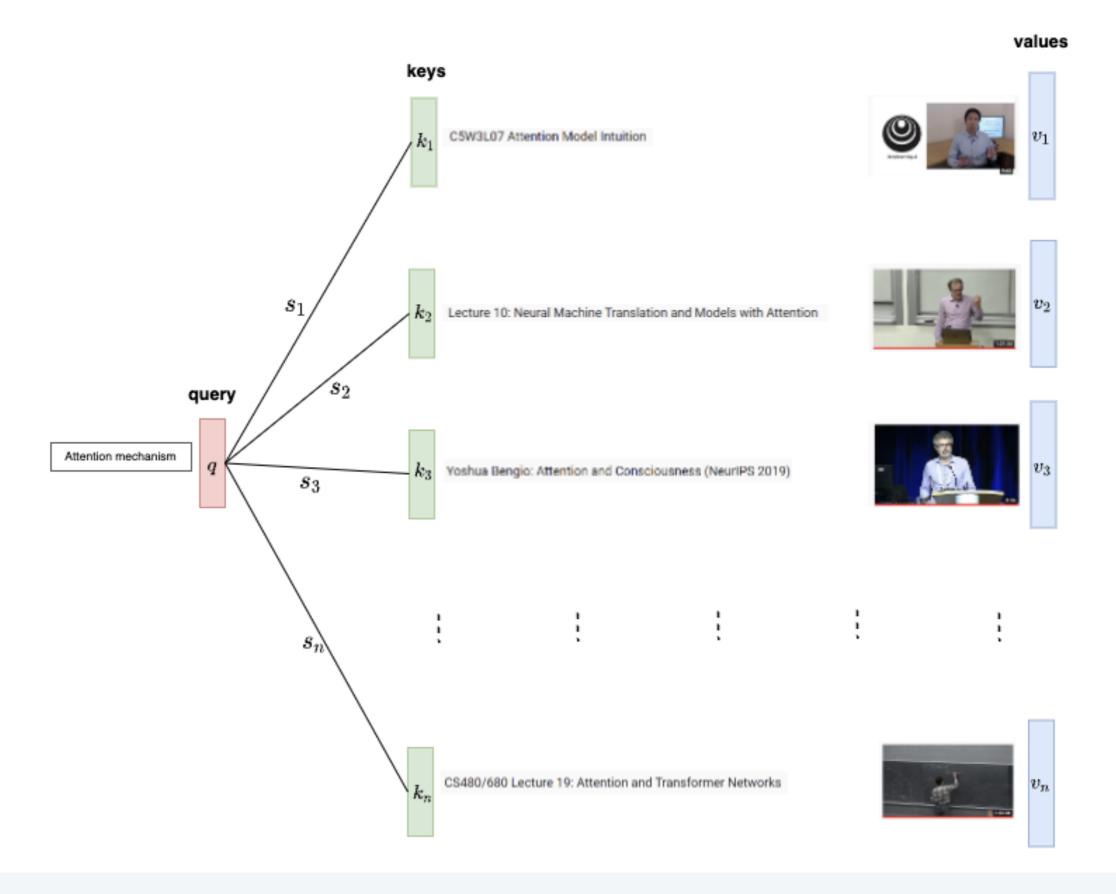




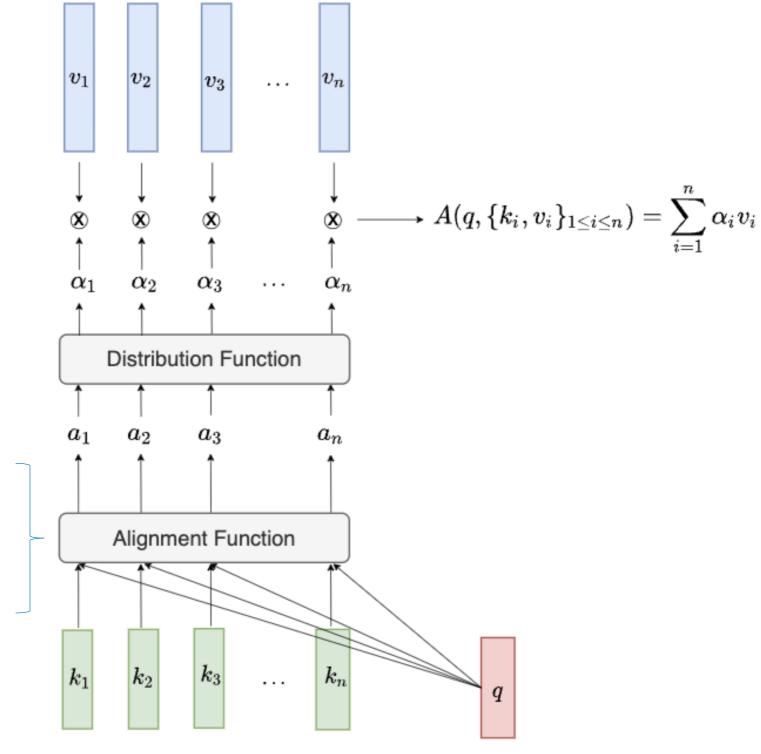




Query Retrieval Modeling – an Example –



Attention Mechanism as a Soft Query-Retrieval Problem

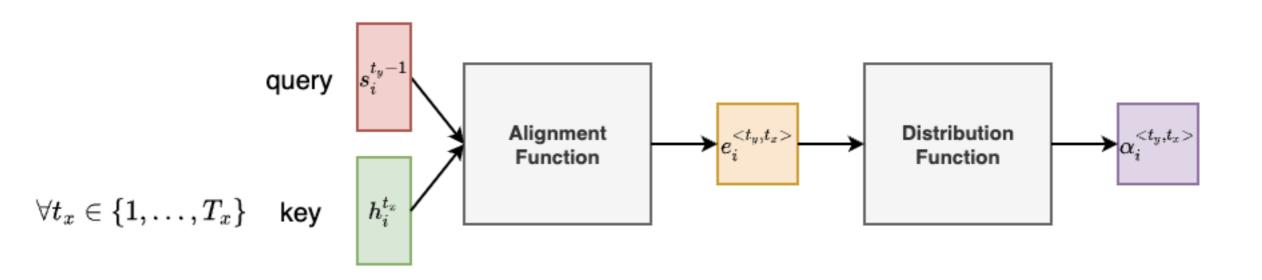


Function	Equation
Dot Product	$a(q, k_i) = q^T k_i$
Scaled Dot Product	$a(q, k_i) = \frac{q^T k_i}{\sqrt{d_k}}$
Luong's Multiplicative alignment	$a(q, k_i) = q^T W k_i$
Bahdanau's Additive alignment	$a(q, k_i) = v_a^T \tanh \left(W_1 q + W_2 k_i \right)$
Feature-based	$a(q, k_i) = W_{imp}^T \text{act}(W_1 \phi_1(k_i) + W_2 \phi_2(q) + b)$
Kernel Method	$a(q, k_i) = \phi(q)^T \phi(k_i)$

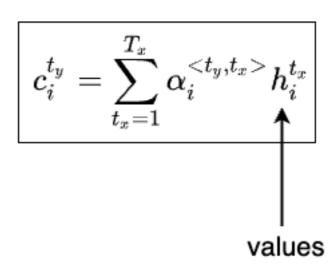
Interactive Session

The Attention Weights

The Attention weights:



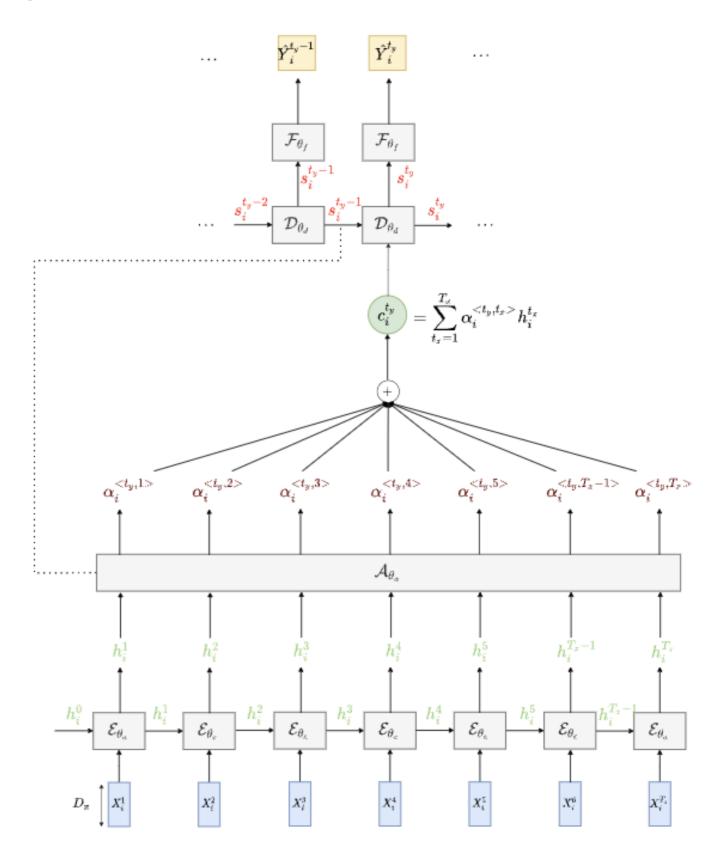
• The decoder input at time $t_y \in \{1, \dots, T_y\}$, also called the context vector is:



Wrap-up: The Sequence to Sequence model with Attention

Generating $(\hat{Y}_i^1, \dots, \hat{Y}_i^{T_y})$ using the final model:

- An Encoder $\mathcal{E}_{ heta_e}$ parameterized by $heta_e$ maps the input embeddings $(X_i^1,\dots,X_i^{T_x})$ to the decoder hidden states $(h_i^1,\dots,h_i^{T_x})$
- An Attention Layer \mathcal{A}_{θ_a} parameterized by θ_a is used to compute the attention weights $\alpha_i^{< t_y, t_x>}$ in order to get the context vector $c_i^{t_y}$, which be fed into the decoder at time $t_y \in \{1, \dots, T_y\}$
- A Decoder Layer $\mathcal{D}_{ heta_d}$ parameterized by $heta_d$ which generates the decoder hidden states $(s_i^1,\ldots,s_i^{T_y})$
- A final Dense Layer \mathcal{F}_{θ_f} parameterized by θ_f can be used to map each decoder hidden state $s_i^{t_y}$ into the prediction $\hat{Y}_i^{t_y}$



Part 5: Attention is all you need

Addressing The polysemy Problem: Building Contextual Embeddings

• Let us consider the sentence: "Tom a été entarté cet été" (which means Tom was hit with a pie this summer).

• Although the token "été" has two different meanings in the sentence, the Word2vec/GloVe approach will assign the same embedding vector to the token "été".

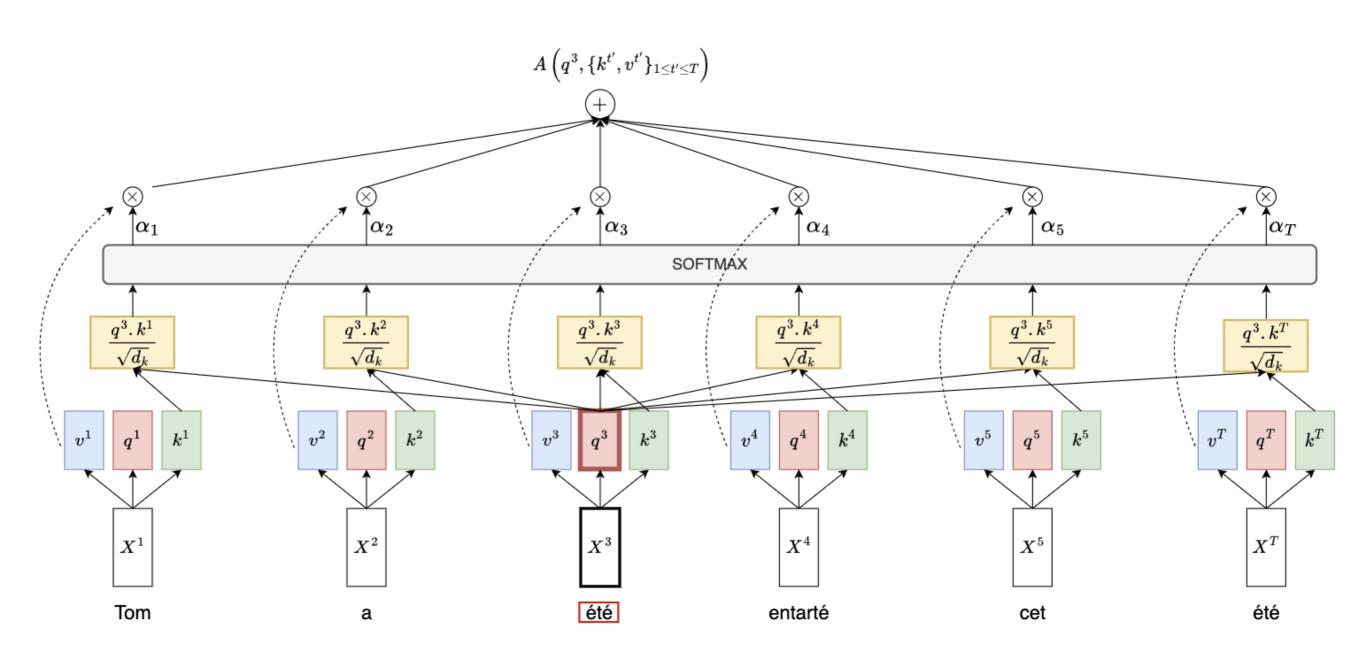


- To overcome the polysemy problem, we need to introduce Contextual Embedding Vectors.
- Contextual embeddings assign each word a representation based on its context, thereby capturing
 uses of words across varied contexts.

Interactive Session

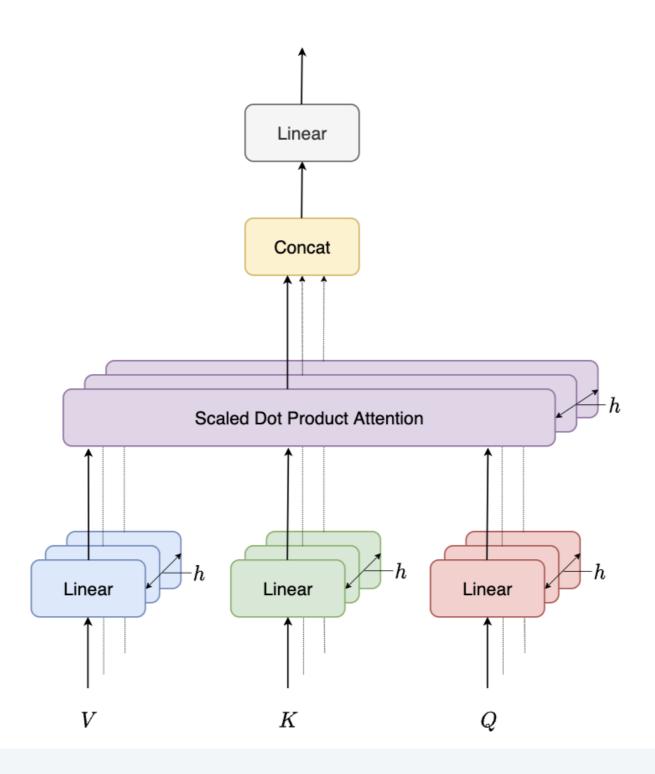
The Self Attention Layer

Calculating the contextual embedding of the word "été".



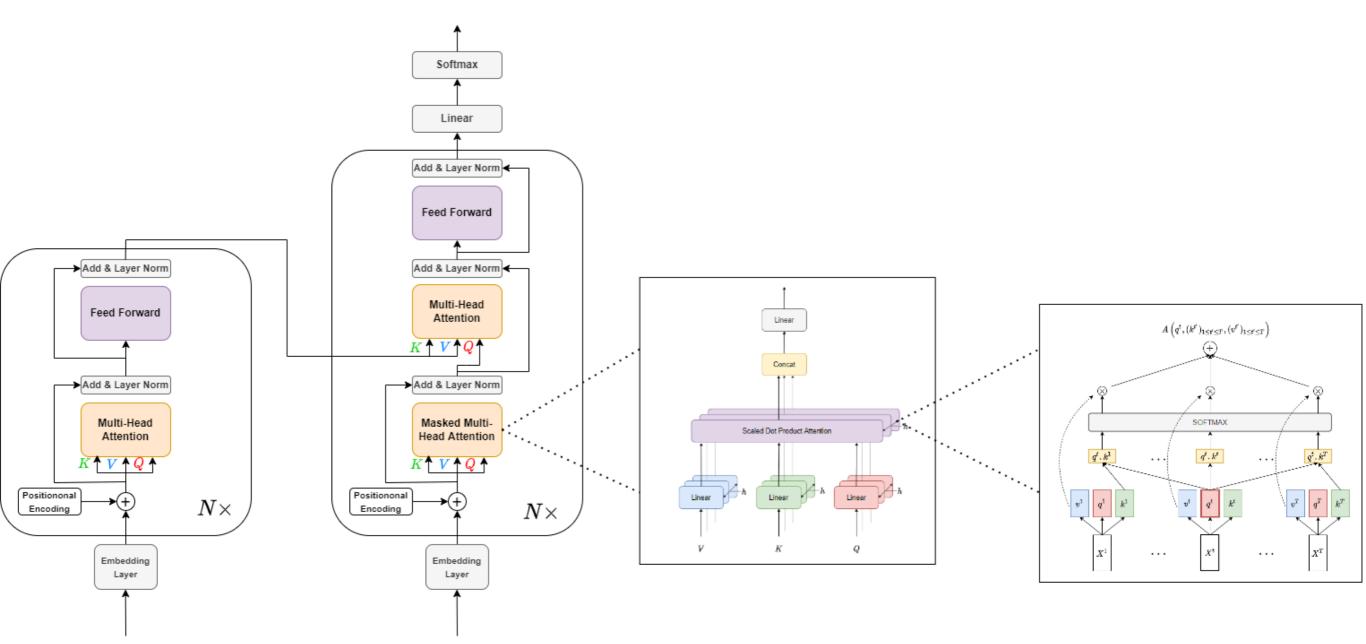
The Multi-Head Attention Layer

• The Multi-Head Attention module consists in applying the self attention mechanism defined previously h times in order to capture different notions of similarity.



The Transformer Architecture

 "Attention is all you need" (Vaswani, et al., 2017) stands out among the most important and interesting papers of the recent years.



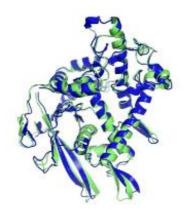
Self Attention Applications:

Language Processing:

Vision:

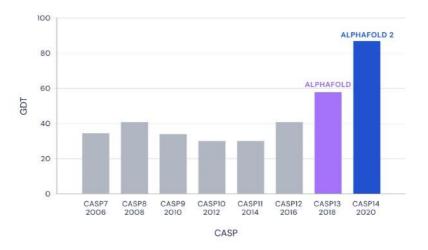
A woman is throwing a frisbee in a park.

• Biology:



- Bert: Pre-training of Deep Bidirectional Transformer for Language Understanding[Devlin et al., NAACL 2019]
- Language Models are Few-Shot Learners [Brown et al., NeurIPS 2020]

- Show, Attend and Tell: Neural Image Caption Generation with visual Attention [Xu et. Al, 2015]
- Transformers for Image Recignition at Scale [Dosovitskiy et al., 2020]



• AlphaFold2 [Jumper et al., Nature 2021]

Programming Session



https://mlfbg.github.io/MachineLearningInFinance/